Category Archives: Projects

Installing Replicant 4.2 on Galaxy S1

Yesterday, I decided to install Replicant on a Samsung Galaxy S1 ( i9000, also referred to as galaxysmtd in the builds ). However, it already had some version of Cyanogen Mod on it – apparently, not the one that was installed. Also, I had to blacklist some drivers for heimdall tool to work on my Linux laptop.

When flashing recovery – if you connect a Galaxy S1 in download mode to a Linux laptop, it’ll present itself as a serial port, then the cdc_acm driver will load and, apparently, send some AT commands (to check if the device is a modem), which crashes something in the download mode code, apparently, so it stops responding to the heimdall tool and there’s always this “Protocol initialization failed” message, and if you get further, there are still problems

To solve this, I added two lines: “blacklist cdc_acm” and “blacklist visor” to an /etc/modprobe.d/blacklist.conf file, and then rebooted. I don’t know if that could be solved without rebooting, only after reboot it seemed to be solved for me.

After this, I could easily flash Replicant-provided recovery image to the phone. However, it’d give this error all the time:

DSCN4600

“Error in replicant-4.2-galaxysmtd.zip (Status 0)”. Not the most informative error message. Basically, the scripts returns “ran normally” but the install doesn’t continue. I opened the .zip and saw the updater.sh there, which ought to have been the file causing that error. After debugging the script execution path with some ui_print macros, I found a section in the middle of the script (in the section for “new mtd layouts” or something) that would stop the process, but exit 0 (erroneously assuming something IIRC).  I removed that section, and it went further – but got stuck on some thing that would “exit 7”. I removed that exit statement too, and Replicant finally got installed. TODO: understand what that “exit 7” thing was complaining about.

However, Replicant is running great now, so all is well =)

SSD1332 65K 96×64 Color OLED sample code + pinout + simplest Eagle breakout

So, I’ve searched for this display’s files for two weeks. Those are cheap (3$ on eBay), but unlike all those SSD1332 displays with green ribbon of uniform width (and available drivers and breakouts). I’m not even sure if this display is SSD1332 based, and I’m not sure I care after many frustrating unsuccessful attempts to get it working. It’s cheap, however, but you do get a bare panel with a controller.

Apparently, these displays are produced by RiTDisplay. They weren’t that helpful with datasheets though and it’s not even listed on their page. Also, apparently, it’s discontinued now. The display has 27 pins, with SPI and 8-bit interface both available. I found it listed as RGS10096064FR004 on one site but the datasheet seemed to be behind the paywall.

Recently, I found the datasheet (more or less accessible), pinout information (found it before somewhere too, but it was hard) AND SAMPLE CODE! I haven’t yet checked it, but since it was hard to find, I’m sharing it with others.

Dropbox link

RGHost link

Yandex Disk link

Also, I’m sharing the simple board I’ve made in Eagle. It’s in no way complete –  no annotations, some jumpers might be missing for your purpose and you’ll have to check the pinout for your driving mode, but the FPC pitch is right and all the pins you’d need are broken out on headers. I also plan to transfer it to KiCad quite soon, so expect it to be available as well.

eagle_ssd1332_breakout

Dropbox

RGHost

Yandex Disk

Remaking MSR206 RS232 magnetic card reader to USB

As you might have noticed, sometimes I work as freelancer in electronics =) It applies not only to fixing PC electronics and mobile phones, but also to repairing, modifying and designing my own solutions in consumer electronics. One of the projects I worked on yesterday is modifying MSR-206 magnetic card reader to replace RS232 port with USB. Let me tell you about that…

IMG_0830

This was of high urgency, so I’ve had to suspend my usual work activities and concentrate on this project yesterday. MSR-206 is a pretty impressive piece of technology, incomparable to those cheap eBay magnetic card readers. It even includes 24V 2.2A DC power supply, which is quite heavy and makes you question those cheap USB 2.5W card readers – like, are they really OK for most applications when somebody released such a powerful thing just to accomplish the same task? It’s also kind of state-of-art inside… Well, maybe it’s just me being used to see a lot of disassembled Chinese stuff =)
Unfortunately, it also is quite old – it has only RS232 port in 8P8C (Ethernet cable) form-factor, not to mention non-standard wiring. My acquaintance working as the IT guy in one hotel had to replace the receptionist PC with a newer one. He didn’t think of need of having a COM port, though. Also, the original COM-8P8C cable was lost, and, of course, cheap COM-8P8C cable for connecting to network equipment didn’t work. So – there’s a hotel that needs their equipment to be in working state ASAP…Which meant replacing RS232 with USB. RS232… I instantly sensed MAX232 chip inside.

So – I disassembled this card reader. Looks great, doesn’t it?

IMG_0831

OK, the top part doesn’t mean much to us. Let’s pull out the PCB:

IMG_0833

On the left side, you can see something related to a power supply. Logic runs on 5V anyway – so I’m not supposed to look closer and examine =)

IMG_0836

L293D? OK, maybe there is a motor or some kind of motor-like thing inside =) Wasn’t exactly my job to figure it out.. 3 of them is something, though. I also didn’t want to see what’s the chip with a sticker on top – must be a MCU, and I knew it didn’t matter to me because I wouldn’t understand it anyway =) Those old MCUs are a PITA when you have to somehow change contents of the ROM or something like that.

IMG_0837

Some kind of logic elements… OK, that’s not what I’m searching for. Let’s see the bottom side of PCB.

IMG_0838

A lone transistor/regulator… Doesn’t matter much.

IMG_0840

Some more logic elements, I guess I’ll have to examine them in case somebody got high and implemented UART-RS232 using buffered logic gates.

IMG_0841

Woohoo! The object of my search. As you know, MAX232 has 2 RS232->TTL (R-T) elements and 2 TTL->RS232 (T-R) elements inside. One pair of R-T&T-R is RX and TX. Other pair is usually unused… Usually. Let’s desolder the chip to see what’s actually used…
IMG_0843
Sorry, sticker, you just were at the wrong place at the wrong time.
IMG_0844
Oh. All 4 elements are used. That’d mean trial and error =( That’s the moment when I realised that I should give Google a try. What I’ve got? A programmer’s manual! Pinouts, commands and so on! Excellent!

First of all, manual doesn’t mention 2 of 4 lines coming from MAX232 to the 8P8C connector. I guess they aren’t that significant then. Other two lines are TX and RX and wiring for MAX232 is exactly the same as on this circuit diagram:

So I soldered 3 wires to GND, TTL RX and TTL TX. What you’d need a chip for then you can interface USB to TTL directly? That’s when a USB-UART converter appears on the stage.
IMG_0850
It’s based on ARK3116 chip, which works on Linux and Windows. I guess now it’s time to say – what a shame that Windows drivers aren’t open-source! This chip works with both x32 and x64 Linux versions, but doesn’t work with Windows x64 – exactly the OS that hotel uses. They’ve installed x32 OS on reception, though – PC wasn’t configured yet and it wasn’t that hard. This board is so small because it was inside of a mobile phone interfacing cable.

So – I soldered headers to the cable that carried TTL signals (the one I soldered instead of MA232). First, I’ve tested them using a FTDI breakout board – it was guaranteed to work good. You know, I’vehad some problems with USB-UART converters in the past =) I issued a command that turns all 3 indicator LEDs on the board… It didn’t work. I swapped TX and RX and – voila!

IMG_0848
Photo (sorry, not screenshot) of my monitor – programmer’s manual on the left side, cutecom terminal on another:
IMG_0849
BTW, Cutecom is a great serial terminal with a GUI =)
Now it’s time for ARK3116 with a USB-B socket soldered to it. That’s when things went wrong – I had wiring problems, soldering problems, adapter problems, software problems and so on. After an hour or so, it finally was OK:
IMG_0851IMG_0852


“[ 587.976696] usb 6-2: ark3116: don’t know how to do software flow control

Sorry, converter, neither do I.

It worked… The only problem was that case wouldn’t close. Turned out that I needed to reposition the converter somewhere else. Like this:
IMG_0853
Cover with a bit of masking tape:
IMG_0854IMG_0857
*puts sunglasses on* Case closed. Now testing with original Windows-only card reading/writing software:
IMG_0858
Woohoo! Ready to be given back to the hotel.

IMG_0855

One more thing for my portfolio in freelance electronics 😉 That sure was fun to make and I hope that’ll inspire somebody. Now – back to writing software for my Arduino payphone project.
BTW, my part-time job now is software testing. It seems that the job changes me already – I’ve found a bug in Tetris:

IMG_0859

tetris-bsd from bsdgames package

Minimizing Eagle-made boards

Disclaimer: I haven’t yet tested any of these projects as currently I haven’t got a possibility to print PCBs even using the toner transfer method. So use them at your own risk – as you should do with any other project on the Internet =)

From time to time I find cool PCB projects on the Web that are just too big for my use or otherwise unsuitable. Sometimes, those are proprietary and you cannot do anything about it. Other times, source files are available and I use my Eagle CAD knowledge and just minimize the PCB dimensions, replacing components and throwing out useless parts =) The power of open-source hardware, hell yeah. Anyway, here are three Eagle CAD projects that I’ve minimized and would like to share.

1) Tiny USB LIRC-compatible receiver

I was searching for a really tiny USB IR receiver for my laptop. I’ve been searching for a long time but it seemed that every solution wasn’t fitting and had one of three problems: 1) not tiny,2) not USB, 3) not for laptops. Finally, I’ve found a solution on this page that is also full of research on the topic… Still not small enough, but the page includes Eagle CAD files! So I’ve got them and opened them, and noticed that connectors could be replaced in favor of smaller ones. (USB-B for MiniUSB) I did that, rearranged the components on the board and it looked nice. That was the first version – the second has 4 holes for wire instead of connector, which makes it even smaller and embeddable – I plan to embed one in my laptop, one in my Raspberry Pi project and keep some assembled receivers in the drawer just for other projects =)

  • First version – photo (some traces are interrupted but it’s OK – you have to use “Ratsnest” tool, so you get a nice ground fill polygon):
  • Initial version – Eagle files are on the same page where I’ve found the circuit
  • Second version – photo (you can compare boards by looking at the FTDI IC):
  • IR receiver
  • Second version – Eagle files

2) FTDI SIM card reader

This is a quite nice thing that Adafruit used to sell as kits for assembly. It included FTDI and RS232 interfacing circuit – I’d call the second part useless in our days, since nobody’d use COM port when there’s FTDI header available. I took the schematics, threw out everything that was related to RS232 and made the board as little as possible. Almost all the remaining components were replaced with their SMD variants, so this board now is as wide as SIM socket and just a little bit longer =) I guess I’ll order 5 PCBs of this after a while – just after I figure out why the heck I’d need them 😉 I’ll definitely have to extend the capabilities of the SIM card reading software that Adafruit provides (I guess it’s not actually made by them, but I’ll find the owner and fork his repository 😉 ).Also, I’ve made an eBay collection with needed parts in bulk, so that when time comes I can easily order everything – and so can everyone.

By the way, before making this board, I’ve assembled a deadbug-style prototype that actually is even smaller and works with USB-FTDI converter without any problems. Here’s a photo for you:

3) 12V-220V power inverter

This Arduino project  by techmind.dk was featured at Hackaday some time ago and I got interested in it, having searched for something like that for a long time. It’s an inverter that takes 12VDC (or whatever here is) and converts it to the 220VAC. It’s controlled by AtMega 168P in DIP package, and there were no SMD components in the original circuit at all. I decided to fix that and asked the author about original .sch and .brd files – fortunately, he shared them. You know, many people just do not share their original files – and I guess that’s one of the biggest mistakes a person can make when designing something that wouldn’t be much of a problem to open-source. See, when all that’s
between a slightly useful project and quite useful project is uploading some files to a hosting, I prefer the latter.
Anyway, I opened those files, replaced through-hole components with SMD and rearranged the elements… I also needed to retrace the whole board, I’d say it was quite challenging =) I don’t know if it works as good as the previous version, though – haven’t tested yet, but you’d definitely need to change some pin assignments in firmware – I mean, LEDs and maybe something else I’ve forgot about, just compare the schematics and you’ll see – I’ll probably do this make a follow-up as soon as I’ll make this board myself. I think I’ll replace temperature sensor with DS18B20, but that’s just an idea.

I’ve already got more minimized projects that I’d like to tell you about, but I guess it will be later – after I check if they’re, in fact, working =)

Project: Payphone remake

One of my current projects in R&D stage is converting a GPT payphone to Arduino platform while preserving all the abilities and keeping its outside as-is. This is a project I’ve started to plan when I was asked to unlock this payphone. See, they have smart card system inside which somehow is responsible for security of the payphone and all that stuff… And the payphone effectively fails to work both with or without a small internal SIM-like smartcard, it’s locked with it and not working without it.
So what? We have a payphone that is useless, even though it’s a masterpiece inside – i’ll show you why.
Without any clue about how to unlock anything on existing hardware, I’ve got an idea… What if I could replace everything that relies on smartcard system (that, unfortunately, means about 75-85% of all electronics in the payphone) with self-developed solution that’d even be upgradeable in terms of its capabilities? That is, we take a MCU, we take all the other parts that we’d need to make a landline-connected phone, put them all together and write the firmware so that they all work together. Great, isn’t it?

When I had to choose a base, I chose Arduino. Why? Development will be easy for me because of great choice of libraries, my knowledge of Processing used in Arduino and huge count of people that are ready to help. Also, there surely are people who might repeat my project, and Arduino would be great for beginners. But… How the hell do you connect Arduino to a landline, let alone make it work as a payphone?

Turns out this isn’t easy, yes. AFAIK, Arduino cannot work with voice, so I’m kind of limited in what capabilities the payphone can have. However, we can leave alone voice synthesis and concentrate on how the heck do those two thin wires that come to our phone make sound…
It’s called DAA interfacing, and I’ve found around 10 articles or posts from people who had it implemented on different platforms. Turns out that you’d have legal problems connecting things to your landline… So – there’s a solution, called DAA interface module, it’s a bit like IC because it has all the needed components in one package, furthermore, it’s FCC approved. It takes those two wires and has contacts to connect the microphone, speaker and some more helpful contacts, such as signalling when there’s an incoming call and when the handset is lifted. Some even have Caller ID contact, although it’s not my case as currently I cannot find any DAA interface which has it and is in stock. Problem is – they’re old and they’re not manufactured anymore. Therefore, stock is not so great as I’d wish it was.
I’ll be ordering two different DAA module ICs:
1) CH1817 – datasheet is here, I’m getting them from here
2) CH1812 – datasheet is here, I’m getting them from here (same seller)

I’ll need to hook up a DTMF decoder to the module’s audio output and a DTMF generator to the module’s input. I’ll also need to mute microphone pre-amp for the time that DTMF generator will make sound. I’ll need something to control keypresses. There are keys on the payphone – and I need to preserve both them and PCB that has all the contacts for keys on it. I plan on cutting traces that lead to keys, disabling them from the rest of the PCB and wiring some kind of keypad controller IC to them. Maxim has one, it has I2C interface and does everything that’s needed – but it’s only QFN, no SOIC package available… There’s a need for a breakout, for sure =)

What about DTMF? Those old codes that phones and, recently, some robots and DIY smart house systems, are using to reliably encode and decode numbers over unreliable and limited phone lines? Well, Holtek seems to be partly targeted at that. They have both DTMF encoder and decoder ICs available, which are easy to control and cheap on eBay. Holtek even has a caller ID decoder IC available, even though I don’t yet know whether I’ll be able to implement that – it has some limitations =( All those ICs are easy to hook up to Arduino, there isn’t much code to be written and they’ll provide all the necessary functions.
By the way, the payphone has a nice HD44780 controlled screen. This screen has a connection header that is fully compatible with all those cheap 16×2 HD44780 screens, all the pins are of this header connected to right pins on HD44780 (I checked with an ohmmeter). In short, differences between this screen and any cheap 2-dollar HD44780 display on eBay are following:
1) Non-standard dimensions – this screen is 1,5 times bigger than all the screens available. Finding another one with the same dmensions would be quite a pain in the ass.
2) It doesn’t freaking work for me yet =(
I’ve ordered replacement controller ICs – there are two of them on a display board. BTW, those are quite hard to find – thank god I’ve found some offers on Alibaba. Well, they were expensive =(
I’ve added a diagram I made in Dia, it explains what’s connected to what =)

diagram

What I’ve ordered?

  • DTMF generator – HT9200
  • DTMF decoder – HT9170
  • Two solderless breadboards – for prototyping (already arrived)
  • Replacement controller ICs for the display – HD44780 and HD44100
  • Arduino Pro Mini MCU
  • DAA modules – I’ll be using only one but you can never be sure, things happen to break at the wrong time =)
  • RTC module – using DS1307 chip and the breakout I’ve developed by myself.

I haven’t yet ordered the keypad controller IC, unfortunately. If I won’t have it in time, I’ll make a keypad controller using a spare Arduino Pro Mini =) Here’s my eBay collection for this project – includes almost all the parts I’ve bought.

Some links, projects and articles about DAA interfacing:

  • This is probably the best article. It’s very close to my project and I guess I learned a lot from it. For everybody that will follow the same path as I did, this has to be read through.
  • This article provides a lot of nicely explained theorethical information about designing your own DAA interfaces. I won’t be following this path because DAA module is claimed to be safer, but it was nice to know more about what am I actually doing 😉
  • This is a price list from Cermetek, company that used to produce those DAA modules. Has nice datasheets of ICs that currently can’t be found anywhere 😉
  • This site sells spare parts for GTP Sapphire payphones. Just so you know =)
  • This is a project with handmade DAA interface – a landline-controlled alarm. If you can’t get a DAA module, take a look here – and don’t forget that theorethical article above so that your interface works instead of catching fire!
  • One more dial alarm with DIY DAA interface. This is described much better than the previous one =)
  • Sample project with DTMF generator hooked up to the phone line. Has some info about transformers and stuff.

More photos of this payphone:

IMG_0567

That’s how it looks inside. Right part is security+DAA+MCU module, box on the left is a coin counting box, which hides a card reader/keypad/accu charger/display modules.

IMG_0564

This module seems to be some kind of safety/power module, unfortunately, when I was doing research on it, I couldn’t connect it to the landline to check. When I’ll be assembling everything, I’ll retrace the schematics and fully understand what it does.

IMG_0565

Card reader module. Probably even has some actuators to push the card out – I didn’t look, I just guess.

IMG_0568IMG_0569IMG_0570IMG_0571IMG_0572

Some photos of main board (right side). Contains DAA and many, many general-purpose 15-year-old datasheetless MCUs that would be impossible to reverse-engineer. Also contains a DB9 port, must be COM – will see when I’ll work on it.

IMG_0573

Security module. So much of a mess because of this PCB and some code in those MCUs that, apparently, says “Nothing will work without a proper authentication on my watch!”

IMG_0632IMG_0633

 

Display, keyboard controller, accumulator controller and all that stuff. 

IMG_0637IMG_0639

IMG_0640IMG_0641

More about keypad

IMG_0634IMG_0636IMG_0635

 

The display. Why doesn’t authentic HD44780 IC work using the same protocol as all the other displays on this IC use?

IMG_0574IMG_0575IMG_0576IMG_0577IMG_0578

Some stickers from inside of the payphone. Google search for “Multipaymond” gives 0 results… Now there will be one =)

Wait for updates – there sure will be some when I’ll get all the parts!

 

 

 

DS1307 real-time clock PCB (SOIC)

I’m back to writing posts! And expect a long post about my Raspberry Pi wearable PC soon =)

Here I present you a tiny I2C RTC powered by DS1307.

Specs:

  • 5V power
  • Possibility to connect 3V battery to save clock value while power is off
  • Small enough – 3,5×2,5cm
  • All parts are easy to find

IMG_0464 IMG_0466

Here’s the PCB image I made using EagleCAD. It uses:

  • CR2032 holder – can be easily salvaged from an old dead motherboard
  • 32,768KHz quartz resonator – same, usually found on old motherboards
  • 3x 10K SMD resistors – could either be bought or salvaged like two previous parts
  • DS1307Z in SO-8 packaging

ds1307

This PCB indeed is tiny. The biggest part of it seems to be the battery holder, and I chose this type of holder/battery combination because both of them are easy to find. Also, you can hook up your own battery – there’s a pin for this on the pin header, thus, big holder is not necessary if you’re not using it =) I made this PCB just because I couldn’t find anything like this on the Net. Now it’s your, too, so you just need to print image below on a sheet of A4 paper using 600 dpi and you’ll have it 1:1. Hint: use GIMP for printing images with certain DPI. Should there be questions, I’ll post a guide for doing this =)

Hope this helps you in your numerous electronics projects.


 Just FYI again – it’s 5V. Yes, it will burn the Raspberry Pi unless you use a logic level voltage converter suitable for I2C communications. Later I’ll probably tell you about making one 😉


I’d really like to provide Eagle files, but the truth is – I lost them somewhere. I might have a backup somewhere, though =( As soon as I find it, I’ll put all the files here.

Raspberry Pi wearable PC project – updates, v2

Today, I’ll describe a temporary pinout for my prototype and some more technical details. Raspberry Pi seems to have a lot of useful pins. Still, it’s not enough of them for my goals. For now, I’m not including Arduino and thus I’ll need to suffice from what I currently have. There are some protocols RPi supports by hardware. Some of them, however, are supported only by software, and thus we need to use bit-banging and polling instead of hardware 1-Wire or infrared. This makes me sad and also loads the CPU, which I won’t have much of.

The following pins are populated on a GPIO header every Raspberry Pi has. I’ve managed to find a usage for all of them. I’ve also noted which pins are connected to some kind of hardware inside the CPU that supports this protocol (like SPI/I2C/UART Raspberry Pi CPU has) and which pins will need to be controlled using bit-banging, emulating a protocol by software.

GPIO2 – SDA (HW)
GPIO3 – SCL (HW)
GPIO4 – 1-Wire (SW)
GPIO7 – CS1 (HW)
GPIO8 – CS0 (HW)
GPIO9 – MISO (HW)
GPIO10 – MOSI (HW)
GPIO11 – SCLK (HW)
GPIO14 – TXD (HW)
GPIO15 – RXD (HW)
GPIO17 – IR-out (SW)
GPIO18 – IR-in (SW)
GPIO22 – DRST (display reset) (SW)
GPIO23 – CSm0 (SW)
GPIO24 – CSm1 (SW)
GPIO25 – CSm2 (SW)
GPIO27 – DD/C (display D/C pin) (SW)

As we know, Rev. 2 boards have 4 more GPIO pins on a separate header, P5. This header also works as I2S connection point, so I think I’ll try to get some kind of cheap I2S audio chip supported by Linux and make a small audio breakout board – maybe 😉
GPIO28 – PCM_CLK (HW)
GPIO29 – PCM_FS (HW)
GPIO30 – PCM_DIN (HW)
GPIO31 – PCM_DOUT (HW)

There are some GPIOs that I certainly won’t be using in my project, and those aren’t available on some of the headers yet they control some of the RPi features and thus are tied to some resistors or separate connectors on RPi board, such as RPi audio output or I2C pins on RPi camera connector.

I’ll definitely re-use the following pins:

GPIO6 – LAN_RUN (resets USB hub, connected to pin 12 of SMSC chip)
GPIO40 – PWM-out (audio right channel)
GPIO45 – PWM-out (audio left channel)
I won’t need RPi audio anyway, as the quality is too shitty for me to consider this as an option.

Yet I plan on using RPi camera and I’d like to view activity LED sometimes, so the following pins will stay untouched:
GPIO5 – CAM_CLK
GPIO16 – ACT_LED
GPIO21 – CAM_GPIO

But those connectors certainly won’t be enough, so I’ll need to wait for the Arduino stage of my project =)

Current state of my project after this update

Current state of my project after this update

As I’ll make external “shields”, such as the Nokia 3310 screen shield, I’ll need some external connectors to attach things. I also need them to be waterproof, remember?

BTW, what about the displays? Each of Nokia 3310 displays has the following pins:
3V3
GND
RESET (needs to actually be used – we have to send a short pulse to initialise a display before usage, Philips even claims that not doing this can damage the controller)
MOSI (seems to perform the same function as SPI SCLK)
SCLK (seems to perform the same function as SPI SCLK)
D/C (this is needed for the display to distinguish between data and commands being sent. Quite logical for the ease of display controller firmware developers, yet that’ll cause some problems as we will need to extend RPi’s hardware SPI by adding software extensions)
CS (seems to perform the same function as SPI CS, active logic level is low, too)
VOUT (needs to be tied to GND through a capacitor)

As I’ve mentioned, I need CS multiplexer for the displays. Guess what – I’ve already built this, just haven’t had a possibility to check anything. I’ve used 74HC138 IC in SSOP case and a little board that extends SSOP to DIP, then desoldered DIP pins and attached the necessary wires. Raspberry Pi has two CS signals. I’ve decided that one of them will be a CS signal for enabling multiplexer, as it certainly won’t need to work for all the time. Multiplexer I use has 3 inputs and 8 outputs. Thus, I need 1 CS pin (as chip enable pin) and 3 GPIO pins to get 8 CS pins – and, as CS signal state doesn’t need to be changed that often during data transfer, I think I’ll be fine with this. I only will use 3 CS signals now but I guess I’ll occasionally find uses for those 5 left – like, for some of those small RF transmitters =)

Click on the image to see the whole picture, not just a part of it =) Active logic level is low because the same is for SPI CS signal.

This is the pinout of display connector I already have made:
EXT_CON1 pinout:
3v3 GND RST D/C MOSI CLK CS3 CS2 CS1 CS0

I guess that looks scary. And I hope that's waterproof enough.

I guess that looks scary. And I hope that’s waterproof enough.

But that’s not the only connector I’ll need. I’ll also need to connect more peripherals, like:

USB flash drives or Arduino through USB-UART connection… why not both, after all?
I2C keypad I’m planning to make
Infrared receiver and transmitter
External display that can be connected to TV-out of Pi.
DS18B20 sensors
SIM card readers
LED flashlight
Hardware interrupts – pins that are used to notify Pi that it’s about to receive/has to fetch some kind of important information that can’t wait, like a keypress from an external keyboard.

So – I managed to get one connector from hard disk drive. This was easy to reuse – though I needed a file and some more tools to minimise the connector so that it could fit in the case.

EXT_CON2 pinout:
SCL SDA 1W      IRO     IRI     TXD RXD INT GND GND
DP1 DN1 VOUT VGND GND GND 3V3 5V   VIN    VIN

IMG_0390

This connector will certainly require its own Eagle part =(

This all has been connected, too. Now I just need to think about external shields, and I guess LCD shield will be the first to be made =) Also, the mystery – how to fasten shields to the case? Screws might not be waterproof enough, magnets will have to be strong enough to hold everything and weak enough not to trigger the switches… I’ll have to think about it, for sure. I’m getting my LCDs during this week, hope they’re not buggy and will fit, else everything will be delayed.

For now, I just need to buy DC-DC converters. My search of custom one or two-layer PCBs for easily available DC-DC ICs kind of failed. I realised I have to go for pre-built modules =( I guess it’ll be hard to find one that won’t be bulky and will be efficient at the same time. So – VIN pins on the EXT_CON2 are not yet connected. Also, there’s just the same 5V-3,3V linear regulator =) I’ll certainly have to remove it, too – as soon as I get a pulse DC-DC.

Looks a little bit scary but it's really so little that I couldn't discard it.

Looks a little bit scary but it’s really so little that I couldn’t discard it.

I’ve installed wireless module I’ve desoldered from a broken tablet PC I had lying around. Many of those, especially cheap Chinese craplets, have WiFi modules either soldered on the top of the board or connected by wires. This was the case for me, so this module was easy to get. Just one thing – some of USB devices that are soldered inside other electronics need 3V3 voltage, not 5V. So be careful with them, should you use one. As you can see, I also supply 3V3 to my module using a separate wire =)
My module is identified in lsusb as:

Bus 001 Device 005: ID 0bda:8179 Realtek Semiconductor Corp.

It’s based on RTL8188EUS chip, and Raspbian didn’t have drivers for it in the default distro. That’s when I understood this situation needs a lot of luck. I googled “how to set up network on raspberry pi model a”. See, I basically made a Model A RPi out of my RPi Model B. That means – no Ethernet. It turned out most people didn’t even think about this or even use network on a Model A. Those who did, used USB-WiFi adapter… And mine didn’t work because it didn’t have a driver.

As I obviously needed to install software, I needed network connectivity. One could have tried using PPPD, but it’s not in the default distribution and therefore doesn’t make sense – to set up PPP connection, I needed to install PPPD, and in order to install PPPD I needed network connection. PAN over Bluetooth had the same problem – no Bluetooth support by default =( So the only way to go was USB-WiFi module. Some modules are supported out of the box, but some require a firmware package to work. Downloading a firmware package from repositories has the exact same problem – you need network connection. One can always download a package .deb file, but if there are dependencies or version mismatch, you are screwed. Fortunately, my WiFi adapter didn’t need firmware packages, it only needed a driver, which happened not to have any dependencies =) For those curious where’d I get the
drivers – MrEngman on Raspberry Pi forums has compiled those drivers for Raspbian and published them, helping all those people that have WiFi adapter with the same chipset. Thank you very much, man! Should you arrive in Latvia – I owe you a beer 😉

And for those people that own RPi Model A and need a network connectivity for the initial setup – you have two ways. One is picking an out-of-the-box supported USB-WiFi from THIS LIST. Other is plugging your SD card into Raspberry Pi Model B, installing the packages using cable connection and plugging the card back. You’ve been warned 😉

My shitty soldering job =(

My shitty soldering job =(

I already think about making a more serious PCB. That is – I need to eliminate wiring and glueing modules using hot glue. Instead, all the modules I have have to be soldered to the board which’d hold everything. Also, I plan on using a separate USB hub chip – would be great if I could make a big protoboard both populating all the sockets, such as I2C, SPI etc, and holding USB hub and all the USB-connected modules – WiFi/BT/UART/whatever. I don’t really need separate boards, and if I remade this mess of wires I have now into a single shield board, it all would certainly be more stable and I’d certainly save some space in the case. So – now I just need to put all the components into Eagle CAD (my CAD of choice when it comes to electronics) and make a board… There is a problem, though. I wonder if I’d be able to do two-sided board by myself, as I can’t make vias now, and I’ll certainly need a lot of inter-layer connections. So – need to get to know how does one make vias at home =) I think about drilling small holes in the board where vias need to be, putting thin copper wires inside and soldering those wires to both sides of the board. Seems to be the way, at least.

With the custom board, I’ll certainly need one option: controlling modules’ power supply. That is – putting a transistor in the power line of each module, be it WiFi, screens or external modules. That will save energy and also improve reliability as it’ll be a possibility to turn off a module should it break and short-circuit everything or freeze everything. I can imagine some kind of power-on self-test-now. Let’s say there’s a startup program that checks all the modules, turning them on one by one. As there’s a possibility that a module is faulty and system will freeze, it has to be taken into account. When system freezes, RPi built-in watchdog will automatically reboot
the system. To avoid reboot loop, the program controlling modules will have to see which module failed on each startup and avoid turning it on again until the problem is solved. It could be done by making some kind of flag before launching module and removing it after the module has been sucessfully loaded, and checking for unremoved flags at each boot to determine whether the boot process had been interrupted due to a module failure. Or, maybe, making boot-up logs and parsing a log of previous boot during the boot process. Any way, this seems to be a good idea – I’ll just need hardware and software to support it 😉 Offtopic: it’s always as cruel as this. We might have excellent ideas – the only problem seems to be the implementation, that’s where most of the ideas get crushed.

The card, with WiFi antenna and DS18B20 connectors visible.

The card, with WiFi antenna and DS18B20 connector visible.

I’ve now bought 8GB SD card for my Pi, and it is still alive =) Seems to be indestructible no matter what I do. Now I just need to test whether the CS multiplexer is working or not, set up Bluetooth and WiFi AP software, install some necessary Python modules for the development, then connect one Nokia 3310 screen I already have and start testing. Software will certainly take its time. I can fit various modules into my setup but there’s no sense if I can’t really use them because there’s no program able to control them. God, this will be a challenge =) Now I see the following software problems for me to be solved:

  • Nokia 3310 LCD control. I’ll need to see whether I’ll need to go for LCDProc or just build my own module on top of “spidev”, extending hardware SPI. That’ll be the challenge, especially when you remember that those LCDs will be the main output device for interacting with user.
  • SPI multiplexer control. It will probably be simple yet problems are still possible.
  • I2C keyboard driver. It’s a little bit early to talk about this because it hasn’t been designed yet, so there’ll be a separate article. But there certainly will be problems =(
  • Menu controller. See, in my plans this keyboard will control some kind of menu where one’d be able to select various actions from those that will be available – and there’ll be a lot of actions available =) So this all needs to be coded somehow, and be reliable and fast.
  • Infrared device control. It really depends on what I choose to do, I guess LIRC will do for the most use cases, but I’m still wondering – what if I’ll need more?
  • Audio device control, that is – volume/active device/source/sink control. I’ll probably use Pulseaudio, but one needs to remember it’s far from perfect.

There’s a big possibility I’ve forgotten to include something, I know =) But you also know that I’ll tell you about the problems I meet on my way, sharing my experience with you. So you’ll se by yourself =)

Waiting for the board to be soldered on =)

Waiting for the board to be soldered on =)

Talking about the I2C keyboard, I’ve received two I2C GPIO extender ICs from Maxim Integrated. They’ve been so generous as to provide me two free samples of it =) Now I’m thinking about how to design a I2C keyboard I’m planning to make. Won’t be that simple yet will be simple =) Gotta spend some hours in Eagle CAD preparing for this, I haven’t actually tried to make my own components in Eagle, so it seems that this will be the first one. I’ve already ran into some design difficulties. That is – my keyboard has to be CPU-efficient, generate interrupts only when a key is pressed, not require any CPU work unless there’s a pressed key (those are 3 different things 😉 ), and it also has to be reliable and cheap. However, I already do have some ideas in mind. I guess it’d be fun to ask advice about this project from Maxim technical support =) I guess they do have some good ideas about how to implement it, and will be able to provide the feedback about my implementation.

The next update will be when I’ll feel I have enough to say =) So stay tuned, it won’t be long. Just keep in mind that I also am preparing for the finals now, finishing my high school. That means I won’t be able to spend as much time on this project as I would be able, be it holidays =(

And it's not even a triumph yet ;-)

Raspberry Pi wearable PC – updates

Good news! I have moved towards my project of wearable Raspberry Pi. First of all, my Raspberry Pi is working. I’ve desoldered all the connectors that were bulky, even though I haven’t desoldered the SMSC ship yet. I’ve desoldered the linear regulator… And replaced it with exactly the same 1117 regulator =) It’s just a temporary proof that external regulator really does work as intended. The Pi boots up nicely even after this drastic modification and is equipped with 8GB card. It also has a case and the prototype shield is being made.

And it's not even a triumph yet ;-)

Poor Pi. It has suffered so many injuries and is still alive.

What I’ll be pairing with Pi?

  • DS18B20 sensors
  • Infrared receiver and diode
  • LED strip piece
  • I2C RTC based on DS1307Z with logical level shifter
  • I2C GPIO expander used as key matrix controller
  • DC-DC 5V-3,3V converter
  • 2 Li-ion 18650 cells
  • DC-DC 7,2V-5V converter
  • Usb hub
  • USB BT dongle
  • 3x Nokia 3310 screens with custom CS signal multiplexer

Later:

  • Pulseoximeter
  • Geiger counter
  • NFC
  • WiFi

How? Just see this diagram on the left. It gives you some clues about what exactly I’m going to make. Diagram on the right shows you what I currently have =)

That's how things are now just for you to see =)

That’s how things are now =)

Turns out Linux also has Paint-like software. This was created by Pinta. Seems like they didn't think much about the name and just rearranged the letters ;-)

That’s how things should look like.

I’m probably going to loot some free sample-offering IC companies =) I’m certainly going to need an acelerometer and gyroscope after that. I have an idea to get them from some mobile phone motherboards scattered around my room, but I just don’t have equipment suitable for desoldering BGA chips – otherwise I’d have had those parts already.

How exactly I’m going to do that?

I’ll need some kind of a board with ATMega – solely for expanding GPIOs, as well as getting normal PWM outputs and analog inputs. These, unfortunately, aren’t available on Pi but I’ll sure need them. I have an Arduino Nano – it’s just that it has broken FTDI chip, all pins desoldered and some traces damaged, but most of them are still fine =) This is necessary for the pulseoximeter to work, for example, as it does require analog input. See, I’m kind of tight on money now =) This explains why I have to suffice from what I currently have and not what I could have ordered from Adafruit/Farnell/DealExtreme/whatever. But I really want to finish this project, and my skills are good enough to get some things out of worthless electronic waste. Moreover, I have some projects that turned out not really good after all – but I can get some parts out of them. So – project will go on. After all, this is something I’ve dreamed about for, like, 1 or 2 years.

Size of my current prototype. Height of it is the same of two matchboxes =)

Size of my current prototype. Height of it is the same of two matchboxes =)

I’ll then have to strap this case onto my wrist using some kind of flexible textile band. As you can see, the case is kind of big. But I still like the idea of wearing it on my wrist. Why? I know, it’s bulky and such – but I plan on giving this project benefits that no smartphone currently has and really using this wearable PC, and I think any continuation of this project is not possible if I don’t use it in my daily life. That, of course, means wearing it on my wrist, no matter if it seems oversized. Later, when I get some money, I might make this smaller, but now I just have no possibility – remember, I’ll have to use what I got now 😉 But for now I’ll have to wear this bulky thing when it’s ready. After all, I could eventually come up with a solution to make a device even this size more prettier =)

As I’ll be using this outdoors, I also want this case to be waterproof. This sure will mean some testing of the closed case under the shower (imitating the rain that sometimes happens =) ) Probably I’ll also test it fully underwater – you know, things happen 😉 And I’ll definitely include some kind of device that’ll monitor if water got inside and notify me immediately, at least with LED on the case. A small circuit using, like, one transistor and an external battery has to be enough.

Yes, that's what I'm talking about. Contacts like that connect HDD controller with HDD head and don't let any air or water through them.

Yes, that’s what I’m talking about. Contacts like that connect HDD controller with HDD head and don’t let any air or water through them.

I’m not including WiFi, Geiger counter or NFC in the project yet, but I think I’ll need them sometimes. So – there has to be some kind of expansion possibility, while keeping everything inside the case waterproof. Way to go, pogopins and isolated contact groups from the broken HDDs! I have already got one contact group from HDD that seems promising, all that’s left is to cut a hole in the plastic and wire all the contacts.

Even though case is big – I probably won’t really be able to stuff just everything in it. 18650 cells will have to be somewhere else. I could put them into some kind of cell-shaped cases (probably an 18650 holder modified just a little bit and also made waterproof) and then attach them to the same band that will hold the case on my wrist. But both DC-DC converters will definitely be inside, along with all the other electronics, except those that will be added from time to time.

hc-06s-1_2

 

I’ll need options for debugging. For example, I’m going to take some magnet-controlled switches and glue them inside the case close to the side. One’d control RPi reset pins, and second would enable UART-Bluetooth converter which’d help to access serial console if everything gets broken. This will be some kind of a last chance tool so I don’t need it enabled all the time – the only drawback is in that there has to be a magnet with me all the time =)

MDSM-4R 12-18

 

The device will certainly act as a RGB flashlight. I’ve got two pieces of LED ribbon, both around 6 centimeters long – one is RGB and other’s just white. Will probably add a possibility to swap them or just use them together. I’d also like to mount a low-power laser, maybe on my index finger – I’ve already tried it and it felt awesome =)

LED_strip_SMD_3528

 

Seems like I’ll be using SPI actively for various things, and each device on SPI interface needs its own CS line. So – there’s a need in SPI CS signal multiplexer. This can be done easily by using some IC like 74hc138, and adds many more chip select lines for connecting more devices to Pi =) But I’ll need to make a Python wrapper library for spidev library so that we can actually use those CS lines, and it’ll occupy 2 or 3 GPIO lines.

ID757_LRG

Click image to go to product page

I2C will be fine – it won’t need any multiplexing. However, there’s another problem – DS1307Z RTC I’m using is 5V-only, and this is not going to make Raspberry Pi happy. So I need a logic level shifter – and I’m going to get it from TI, as the IC they have is the best for this purpose but is hard to get in Latvia for reasonable price.

 

 

I also plan on making an I2C keyboard that will consist of keys placed on fingers of my left arm, the same arm I’ll be carrying my PC on. I want to experiment with this way of controlling the PC, that is – key matrix on the fingers. But I’ll surely need a GPIO expander for this, and I2C seems to be a way to go.

I might buy a camera board if I happen to get enough money, even though it’s not my top priority for now. I already have the plans on how to extend the wiring up to 1M without noticeable losses in signal – using USB cable for power, ground and I2C signals and a shielded Ethernet cable for 4 differential data pairs =) The camera will probably be shoulder-mounted for better field of view with some kind of servo turning it around.

Click image to go to product page

If it lasts, I’ll try to add a GSM modem – at first it’ll be just capable of sending message through some simple software, but then code might be added to enable voice calls. I just don’t feel like being ready to code voice call support, but I haven’t looked that much at it yet =)

 

 

 

I also will need some ICs to help my project. Those include some that I just can’t get in Latvia for any kind of reasonable price. Thus, I’ll need money to obtain them =) For example, I need following ICs from Texas Instruments:

  • TUSB2077APT USB hub – I’ll temporarily replace it with a GL805-based board and, probably, will make a breakout for GL805.
  • TPD4E001DCKR USB hub ESD protector
  • TCA9555 I2C GPIO expander
  • PCA9306 logical level shifter for I2C – but I’ll look out for a possibility to replace this with something.

They’ve refused to send them as samples as it’s not any kind of university or company project. So – gotta get this on my own =) Or, maybe, search for similar things at other companies.

Bigger! Way bigger!

Bigger! Way bigger!

As the PC probably need to be silent sometimes, I’ll equip it with a vibromotor, similar to those used in mobile phones, just a little bit bigger. It could be also helpful in waking me up =)  Also I’m not sure whether I’ll need loudspeakers integrated. I think I’ll mostly use either wired headphones or BT headset with this. And if I’d need to use loudspeakers with my wearable PC, I have battery-powered Nokia speakers. Also, integrated loudspeakers are hard to make waterproof – sad but true.

 

 

Not to mention that Pi has shitty PWM-driven audio output =) I’ll certainly be using my PC as a MP3 player, so I’ll need to add an audio card to it. Either USB or I2S, I don’t know which will be more affordable for me.

The last thing – all this will sure need its own RPi SD card image, maybe even recompiled kernel =) This image will for sure be public and I’ll probably even make instructions on how to embed those things into Raspbian.

All in all, each of these chapters will get an article on its own. I’ll be soon putting an article about DS1307Z PCB that is already made and show you a RTC module for this project – I just don’t have a normal board etched yet to show you. Other things will then follow as soon as I make them.

                                                                                                                                                            

So, what are the requirements for me to make it?

Tools:

  • Soldering iron, enough solder and flux, along with some more essentials – check.
  • Soldering heat gun – I have a possibility to use friend’s one so no worry about this, check
  • Hot glue gun – check
  • Dremel – check
  • Everything to make my own PCBs – check
  • Power supplies for substituting batteries while they’re not working yet – check

Programming languages:

  • Some Wiring language experience I got as a result of tinkering with Arduino before. Thus, it won’t be a problem to make firmware for Arduino as a GPIO expander.
  • Python – my language of choice, and it fits in the project as it has all the capabilities needed. I’ve already got some experience in writing more or less complex programs and it won’t be a problem to make usable and useful software for a wearable PC =)

Materials:

  • Case – check
  • Raspberry Pi – check
  • Some pre-etched breadboards for prototyping – check
  • USB BT module – check
  • USB-UART module – check
  • BT-UART module – check
  • Magnetic switches – check
  • I2C RTC – PCB is not etched yet, but the layout is ready and I have all the parts
  • LED strips – check. Will need to remake them to work on 5V instead of 12V, though, or get a 5V-12V DC-DC.
  • USB hub with ESD protection – to buy from Texas Instruments
  • I2C GPIO expander – from TI, too
  • I2C level shifter – same
  • DS18B20 – check. Got like 3 of them already.
  • IR receiver/diode – check
  • ATTiny 2313 for multiplexer – check
  • Arduino – I don’t know whether mine is working now. If it isn’t, this part will be delayed.
  • 18650 cells with holder – not available yet. I know how to get decent cells here, though, so it’s a matter of money. I also know a person who’d buy the holders for me abroad, as they’re difficult to spot here.
  • DC-DC converters – not available for me yet, too. But I’ll soon make one using a LM2576 – just got one fixed for 5V and they seem easy to design a PCB for.
  • Nokia 3310 screens – I know a place where to search for those phones broken, and I’ll just get the screens by disassembling them.

Some cool battery hack lies beneath this image, click!

                                                                                                                                                            

Note – I could get some 18650 cells from laptop batteries. The thing is that I don’t feel good about fiddling with lithium batteries as this easily gets dangerous – and I don’t want my arm to be torn off by an explosion, so I won’t be trying to get those cells for cheap.
I also have an idea for a temporary setup, not needing money. I happened to have 3 batteries of Asus EEE PC, a laptop I’m currently using. That means – 2 spare batteries, and they have just the same 18650 cells inside. So – I could find a way to wire EEE PC battery socket to the DC-DC regulators so that I could power the PC with the said batteries and charge them using my laptop, until I buy proper cells, holder and charger. After that, when I’ll need more custom solution, I’ll go for making something else =)

See, I want to build this PC as soon as it’ll be possible to but also make it functional enough to work, not to be just an additional weight for my arm. Therefore, I’m gonna make a prototype PC fast and then, as I get money, make it better step by step.

 What are the positive and negative sides of this project I can think of?

Pros:

  • It’s completely open-source, excluding RPi GPU code, of course.
  • It’s the first project like that – no one has ever put anything like this in public.
  • There’ll be data about every step on my blog, or a substitute from other blog describing exactly the same part of my work.
  • Parts will be cheap – I just don’t have any other choice other than to pick cheap parts =)
  • It’s free from Google surveillance and things like that. With this PC, you control your privacy.
  • It’ll be really easy to modify it to suit your needs – to throw out something unnecessary or to add something that’s vital for you.
  • Almost everyone will be able to build one by spending some time working or, at least, to buy one instead =)

Cons:

  • It does take some time and soldering skills to build a PC like that.
  • It’s big and bulky. At least, I haven’t found a good way to shrink it yet.
  • Everything that is planned will need to be coded, this will take time.
  • It’s not really suited for running a desktop environment on. You can have another Pi for development, though =) I’m using a laptop, so it’s fine for me. It won’t be any faster or slower than a Pi is, that’s it. I’ll certainly think about making a custom DE or modifying something already existent and lightweight.
  • It’s not developed by some kind of a company with resources. This is both good and bad thing. What’s bad is that if I fry some of the vital parts I have now (such as RPi), development will likely be delayed as I simply don’t have that much money.

IMG_0382

I’ll be developing this anyway, as all the positive sides are just what I search for and all the negative sides don’t bother me that much. So – count on the project as a started, and I doubt there’d be any obstacles that’d divide me and this project… If only I don’t lose my prototype or it doesn’t fry itself due to being badly planned or MB due to my occasional clumsiness. Hope that won’t happen =)

Wearable PC project from Raspberry PI – preparation and idea

Raspberry Pi has been nearly anywhere – robots, desktop computers, laptops, control centers, HTPCs, control centers, game machines, bar tables, spy devices, web cameras – to be continued. But what about a wearable computer? Something I dream about? I haven’t seen some project that went public yet. Basically, nothing to be inspired from, than Pip-Boy =)

My favorite accessory from my favorite game. This does inspire, indeed!

And that’s OK, as long as the idea inspires me enough to write about it. Talking about Pip-Boy – that’s kinda of what I want my future wearable PC to look like. I want it to be placed the same way – on my arm, but I won’t be making it as big as Pip-Boy yet =) It has to have two 18650 cells inside, with the way to charge them. It also needs to have BT and USB hub inside, and, possibly, WiFi. I want it to be wireless yet reliable so some crucial communications will be wired. Talking about communications…

What could this PC have as a display? There’s no such a thing as “cheap yet good display for RPi”. SPI screens are slow to refresh. Composite video screens don’t have any much quality of image, also, the resolution is limited. HDMI screens are expensive and hard to find. Those DSI-connected screens simply do not exist. Given that my money is limited, I’ll now have to choose between composite video and SPI… And at the moment I choose neither. I think I can live without a screen for a while =) I had an old idea of hanging three Nokia 3310 screens to the SPI port of either RPi or Arduino as a helper module. I still have it and I like it – there is a place for them on my sketch I have in mind. They’d be showing time, date, status of various wearable PC additions and possibly would have some controls to make a simple menu using them. This is much more easier and less expensive, even though requires some soldering 😉

Yes, that simple. And 3310 are just soooo easy to get 😉

So – what’s RPi lacking from a perfect wearable PC base? Well, Model B with its 512MB of RAM seems good, but…
Small size and energy consumption seem to be the problem. What’s about size?
Even though we can’t change the board’s length or width, we can change height. There are some connectors that can easily be removed, and we can use pins to connect something to RPI instead. For example, we could replace the double USB connector with 2 groups of 4 pins – both replacing each 4 contacts of each one of two USB ports. For RCA jack, there’s only two pins. For audio – 5, but it seems that 2 of them are useless, so let’s say – 3. Ethernet jack? Well, I suppose I don’t really need Ethernet on my wearable computer, MB I could bring USB-Ethernet card with me just in case, but that seems an overkill even for debugging. So Ethernet jack stays somewhere else in my drawer 😉 I won’t be removing neither HDMI not CSI/DSI as they’re OK and don’t enlarge size that much, also, they will be used sometimes.

This photo shows what Pi looks like with connectors desoldered. Also, click to go to this project page =)

OK, something is clear about the size. What about the energy consumption? Well, there are three things on the board that consume energy.

That does look terrifying if you think about how much energy is wasted =(

First is the CPU. We can’t do much about it, though, except underclocking. The best we can do is to cool it down. I think heatsink really has to be in my wearable computer – just for the stability 😉 So – I’ll have to have a heatsink on CPU. I’m not sure how this will improve power consumption, though, but it will definitely make a job easier for the CPU. Second is USB hub&USB-Ethernet chip. Well, I personally think we can remove it without a doubt. Why? First of all, it’s laggy sometimes, some users still report driver problems regarding exactly USB-Ethernet, as I’ve seen on forums. Also, I won’t be needing Ethernet, remember? So I think it’s better to have the possibility of choosing whether I want USB hub enabled or not, and thus have better power management. You see, you can turn off external hub – but with internal it’s not that easy. Also, it freakin’ heats up =) So – I’ll also have to remove this SMSC chip. Third part is 5V-3.3V regulator. It’s linear, so it heats up, too. Also, I think I’ll need much more current on 3.3V line than this regulator can provide, so I think I’ll be replacing it with something else. Some guys did replace it with a switching regulator, I think I’ll do the same.


So – remove the linear regulator.
Also, speaking about the power – will have to think about whether this MicroUSB port with the corresponding capacitor and fuse are really necessary. Given that I’m likely to power everything through GPIO header, I think they aren’t.

Okay, I can now imagine the board without all those large connectors. The only things that remain are: GPIO headers, USB/audio/RCA headers, reset header, HDMI/CSI/DSI connectors and the CPU. It just seems like an Arduino now, having some pins we can plug a shield onto. And we will. I think that RPi is to be like a processor shield for my wearable computer, and we have to plug this processor shield into an expansion board. What’s this expansion board? First of all, something that will be connected to all the GPIO pins of the RPI. So – in the base there must be a PCB with sockets for GPIO pins and stuff. It should expose USB/RCA/audio connections, too. Then, we have to have some kind of USB hub there. I think it won’t be hard to make a hub directly on this PCB.
Like, we have chips like GL805, which have accessible specifications, and they don’t require that much of components to work, and what’s most important – they’re in every second Chinese USB hub. Even though they are, indeed, consuming around 100mA even when idle – it’s something for the start, later on we can grab something from TI to ensure power efficiency.
On this PB, I also plan putting BT and WiFi modules. I’ve seen WiFi modules for, like, 6-7EUR each, that had good Linux compatibility and could be soldered directly onto PCB with pads prepared for that.

Click on this to go to product page

Will have to find BT modules like that, though – BT is my concern as I feel I’ll be using it actively.
sample design pics here
Also, I’ll certainly have an IR sensor and IR LED on this PCB, along with some DS18B20’s and MB other stuff that I could develop on. See, as it is a wearable computer, some of temperature sensors are certainly going to be stuffed under the clothes to log the temperature of my body with 0,01 Celsius grade precision. Pulsoximeter will follow this shortly after that, and I definitely will add something more 😉 One more thought for this device – it could be the thing that registers when I fall asleep, just to turn off the lights and lock my PC so that nobody will blame me for leaving lights on and PC working =)

I could think of many usages, like a mobile phone/PDA replacement, audio player and stuff like that – the problem is I haven’t started actually working yet. I don’t even know if the RPi I’m holding in front of me right now is in a working condition – I occasionally threw it in my school bag and it got some minor injuries there, none of those look critical but there might be some critical ones that just can’t be seen easily. So – the whole project depends on whether mine RPi is working. I’ll provide updates when I have them =)

This is real… But inside there’s just a music player. Gotta fix that in my edition 😉

Gotta go and strip ALL the connectors off!

And no, it’s not an April Fools joke – updates are to be coming soon 😉